Time Series regression

Time series regression

Introduction

  • $\beta_d$: parameter for predictor no.d
  • $z_{d,n}$: predictors no.d at time n
    • one $z$ can be $y$, another $z$ can be $y^2$
  • $x_n$: x value at time n, to be predicted
  • $w_n$: white noise at time n
  • Basic form
    • $Xt = \beta1z{1,t}+\beta2z{2,t}+…+\betadz{d,t}+Wt$
    • Predict $X$ at time t, based on factors $z1, z2,…,z_d$ at time $t$
    • $W_t$ is gaussian white noise series
  • Simple linear regression model
    • $Xt = \beta0+\beta1zt+W_t$
    • ‘simple’ because there is only one predictor
    • ‘linear’ because COEFFICIENTS are linear
  • Multiple linear regression model
    • $Xt = \beta1z{1,t}+\beta2z{2,t}+…+\betadz{d,t}+Wt$

Parameter estimation

  • Simple linear regression model
    • SSE = $\sum{t=1}^n(xt-{(\beta0+\beta1z_t)})^2$
    • $\hat{\beta}1$ = $\Large\frac{\sum{t=1}^n(zt-\bar{z})(xt-\bar{x})}{\sum{t=1}^n(zt-\bar(z))^2}$
    • $\hat{\beta0} = \bar(x)-\hat{\beta1}\bar{z}$
  • Multiple linear regression model
    • model:
    • $x=Z\beta+w$
    • SSE:
    • SSE = $(x-Z\beta)^T(x-Z\beta)$
    • $\hat\beta$:
    • $\hat\beta = (Z^TZ)^{-1}Z^Tx$
    • Where:
    • $x = [x1, x2,…,x_n]^T$
    • $w = [w1, w2,…,w_n]^T$
    • $\beta = [\beta1,\beta2,…,\beta_d]^T$
    • $Z = \begin{pmatrix} z{1,1} & z{2,1} & \cdots & z{d,1} \ z{1,2} & z{2,2} & \cdots & z{d,2} \ \vdots & \vdots & \ddots & \vdots \ z{1,n} & z{2,n} & \cdots & z_{d,n} \end{pmatrix}$

Model selection

  • Approaches:
    • Forward selection
    • Backward elimination
    • Cross-validation
    • Divide data into train and validation sets, iteratively train models on training set, select the model with the best performance on validtaion set
    • Regulation methods
  • Metrics:
    • Adjusted $R^2$
    • The higher the better
    • AIC
    • AIC = $ \log(\frac{SSE}{n}) + \frac{2d}{n}$
    • Measures the distance between current constructued model with best model you can construct so it’s good and the lower the better
    • BIC

Tags:

Comments are closed

Latest Comments